杏彩体育
杏彩体育 分类
数控加工论文IM电竞十篇 发布日期:2023-06-15 11:33:41 浏览次数:

  (1)加工原理误差。加工原理误差是在实际的机械零件加工过程中,使用和理论加工方法类似的技术、刀具轮廓以及传动比等使得产生的零件参数与理论有所偏差。这也是数控机床机械加工中最常出现的精度误差原因。产生这种误差的原因有两种:a.实际的加工中使用类似的加工方法,在数控机床的实际操作中,为了使加工的流程看起来和理论相似,使用的加工方法和理论上有所差距,这必然会造成加工原理上的误差。b.实际机械加工中使用的工具和理论模具不一样,比如刀具轮廓的使用,理论上机械加工要求刀具应当具有很高精度的刀具曲面,但是实际操作中,机械加工的刀具不能达到理想的要求,一般会采用近似的刀具曲面,像弧线、直线等线性进行替代,这种情况就会造成刀具轮廓加工过程中带来的加工理论误差。(2)工艺系统误差。a.机械零件受力点位置变化引起误差。在机械加工工艺的生产中,工艺系统的切削着力点通常会伴随着切削的位置进行变化,两者之间位置的变化,使得加工零件受力点在不断变化,在位置的交错中,会造成一定的误差。b.机械加工受力程度的变化引起误差。在机械加工中,零件受力点在不断变化过程中,点受到的切削程度也会不一样,由于被加工的零件本身就存在材质、形状和尺寸的不均匀情况,在加工的过程中就会形成不同受力点切削的力度不一,形成加工工艺中的误差。

  在现代科技的发展和应用中,保证机械加工的精度的方法有两种,一是提高数控机床的质量IM电竞,二是采用误差补偿技术,本文着重从误差补偿技术进行精度提升的研究。误差补偿一般又可以分为误差预防和误差补偿技术,在误差补偿技术中常用的方法是误差建模、误差测量、误差补偿实施。(1)硬件静态补偿法。在机械加工精度控制中利用硬件静态补偿法是指通过添加外部硬件机构,在外力的作用下让机床运用副位置产生与误差方向相反的运动来减少加工中的误差。在加工螺丝时由于加工机床丝杠之间存在误差,通过螺距校正尺来进行丝杠之间的螺距,就属于是静态补偿法。由于静态补偿法的局限性,只能在停止时进行数值或者是硬件的参数调整进行补偿,在运动时不能进行实时的补偿,这种硬件静态补偿法被使用的频率相对较低,一般会和其他方法进行综合使用。(2)静态补偿法和动态补偿法综合使用。上面已经给提到静态补偿法是在数控机床加工的静止时,通过调整参数进行误差补偿,这种补偿法可以对精度进行系统补偿提高,不能在运动中进行随机的误差补偿,通过和动态补偿法的相结合可以实现加工精度的大大提高。动态补偿是在加工的切削情况下,依据机床的工况、环境条件和空间位置的变化追踪进行补偿量亦或参数补偿,通过运动的实时现状进行反馈补偿,例如在轴承的机床加工中,通过对热量、几何形状、切削程度的监控进行及时的参数修改补偿,是一种具有现实实际意义的误差补偿法,但对于数控机床的技术水平要求极高,投入的成本很大。(3)进给伺服系统补偿法。伺服系统是驱动各加工坐标轴运动的传动装置。这种补偿系统可以正反两个方向运行,能够根据加工轨迹的要求,进行实时的正向或者反向运动,其加工控制精度可以达到0.1微米,另外它的调速范围宽、快速响应并无超调、低速大转矩。在典型的数控机床进给系统中由步进电机构成的开环控制系统,步进电机的角位移或者线位移与脉冲数成正比,其转速与脉冲频率成正比,它将指令脉冲变成步进电机输出轴的旋转运动来控制机床加工;闭环进给位置伺服系统,它主要是采用直流伺服电动机或交流伺服电动机驱动,机床工作台的实际位移可通过检测装置及时反馈给数控装置中的比较器,以便于指令位移信号进行比较,两者差距有作为伺服电机的控制信号,进而驱动工作台消除位移误差;半闭环进给位置伺服系统,该系统由位置控制单元和速度控制单元构成,光电脉冲编码器发出的脉冲,一方面用作位置的反馈信号,另一方面用作测速信号。当点击的负载变化时候,反馈脉冲信号的频率将会随着变化,在实际的机床加工中,通过控制伺服电机的转速进行精度误差的减小。(4)修改G代码补偿法。G代码是编制机床加工程序的语言,G代码中有刀具的补偿功能,像G44、G43是刀具长度补偿。G代码的补偿原理是通过对刀位信息的修改来补偿误差的范围。这种补偿也被广泛用于数控机床的机械加工误差补偿,例如Hsu等人建立的五轴机床误差补偿模型,根据对模型对CAM软件生成的初始刀位进行修改,用修改G代码的方法完成数控机床机械加工误差补偿。这种补偿方法需要G代码的编程人员进行工件的几何形状确定,确定工艺过程和刀具轨迹,在进行实际的运行中,如果出现位置偏移就需要通过修改G代码进行误差补偿,一般运用于比较简单的加工零件,其形状不复杂,主要是直线和圆弧组成的轮廓,数据的处理量不大,在遇到工作量大,复杂的零件时候,就需要通过计算机的G代码控制进行修改,程序员通过计算机辅助进行编程。(5)坐标偏置补偿法。坐标偏置补偿法是利用数控系统的坐标原点偏移,参照位置等信号的反馈进行机床误差的补偿。在程序员进行操作时候,可以通过数控系统的直观显示进行零件加工的误差校对,对于出现误差的,可以通过操作数控系统对原点坐标进行重新设置,使其对出现的误差进行补偿,这种补偿方法适用于三轴坐标的数控机床。这种补偿法一般在使用侧头时候用的是固定侧头,同时还需要一定的软件补偿,保证地基的稳定。

  综上所述,误差补偿法可以有效的提高数控机床机械加工精度,并能够给数控机床带来经济效益。误差补偿可以有效的控制数控机床机械加工过程的零件精度,有助于提高机械加工工艺技术,能够适应数控机械加工企业的高级精度、高级质量水平化发展方向。误差补偿法是在原有数控机床的基础上,通过科学的技术和手段,来实现零件设计的理论值,目前误差补偿的技术已经被广泛的应用和被相关学者所关注,并且在通过不断完善和更新误差补偿技术,使其成为现代社会精密工程的主要技术。

  [1]丁来军.误差补偿在提高数控机床机械加工精度中的应用[J].黑龙江科技信息,2016(10):23.

  [2]龙鹏,李洪涛,李安国.基于数控机床空间误差提高其加工精度的补偿方法研究[J].机械工程师,IM电竞2012(6):41-43.

  [3]王倩,王贺.误差补偿在提高数控机床机械加工精度中的应用[J].科学与财富,2015(15):161.

  [4]李绪平.数控机床的误差补偿技术研究[J].中国机械,2015(5):113-114.

  随着计算机技术的高速发展,传统的制造业开始了根本性变革,各工业发达国家投入巨资,对现代制造技术进行探讨开发,提出了全新的制造模式。在现代制造系统中,数控技术是关键技术,它集微电子electron、计算机、信息处理、自动检测、自动控制等高新技术于一体,具有高精度、高效率、柔性自动化等特点,对制造业实现柔性自动化、集成化、智能化起着举足轻重的运用。目前,数控技术正在发生根本性变革,由专用型封闭式开环控制模式向通用型开放式实时动态全闭环控制模式发展。在集成化基础上,数控系统实现了超薄型、超小型化;在智能化基础上,综合了计算机、多媒体、模糊控制、神经网络等多学科技术,数控系统实现了高速、高精、高效控制,加工过程中可以自动修正、调节与补偿各项参数,实现了在线诊断和智能化故障处理;在网络化基础上,CAD/CAM与数控系统集成为一体,机床联网,实现了中央集中控制的群控加工。

  长期以来,我国的数控系统为传统的封闭式体系结构,CNC只能作为非智能的机床运动控制器。加工过程变量根据经验以固定参数形式事先设定,加工程序在实际加工前用手工方式或通过CAD/CAM及自动编程系统进行编制。CAD/CAM和CNC之间没有反馈控制环节,整个制造过程中CNC只是一个封闭式的开环执行机构。在复杂环境(environment)以及多变条件下,加工过程中的刀具组合、工件材料、主轴转速、进给速率、刀具轨迹、切削深度、步长、加工余量等加工参数,无法在现场环境(environment)下根据外部干扰和随机因素实时动态调整,更无法通过反馈控制环节随机修正CAD/CAM中的设定量,因而影响CNC的工作效率和产品加工质量。由此可见,传统CNC系统的这种固定程序控制模式和封闭式体系结构,限制了CNC向多变量智能化控制发展,已不适应日益复杂的制造过程,因此,对数控技术实行变革势在必行。

  2.1.1高速高精高效化速度、精度和效率是机械制造技术的关键性能指标。由于采用了高速CPU芯片、RISC芯片、多CPU控制系统以及带高分辨率绝对式检测元件的交流数字伺服系统,同时采取了改善机床动态、静态特性等有效措施,机床的高速高精高效化已大大提高。

  2.1.2柔性化包含两方面:数控系统本身的柔性,数控系统采用模块化设计,功能覆盖面大,可裁剪性强,便于满足不同用户的需求;群控系统的柔性,同一群控系统能依据不同生产流程的要求,使物料流和信息流自动进行动态调整,从而最大限度地发挥群控系统的效能。

  2.1.3工艺复合性和多轴化以减少工序、辅助时间为主要目的的复合加工,正朝着多轴、多系列控制功能方向发展。数控机床的工艺复合化是指工件在一台机床上一次装夹后,通过自动换刀、旋转主轴头或转台等各种措施,完成多工序、多表面的复合加工。数控技术轴,西门子880系统控制轴数可达24轴。

  2.1.4实时智能化早期的实时系统通常针对相对简单的理想环境(environment),其运用是如何调度任务,以确保任务在规定期限内完成。而人工智能则试图用计算模型实现人类的各种智能行为。科学技术发展到今天,实时系统和人工智能相互结合,人工智能正向着具有实时响应的、更现实的领域发展,而实时系统也朝着具有智能行为的、更加复杂的应用发展,由此产生了实时智能控制这一新的领域。在数控技术领域,实时智能控制的探讨和应用正沿着几个主要分支发展:自适应控制、模糊控制、神经网络控制、专家控制、学习控制、前馈控制等。例如在数控系统中配备编程专家系统、故障诊断专家系统、参数自动设定和刀具自动管理(manage)及补偿等自适应调节系统,在高速加工时的综合运动控制中引入和预算功能、动态前馈功能,在压力、温度、位置、速度控制等方面采用模糊控制,使数控系统的控制性能大大提高,从而达到最佳控制的目的。

  2.2.1用户界面图形化用户界面是数控系统与使用者之间的对话接口。由于不同用户对界面的要求不同,因而开发用户界面的工作量极大,用户界面成为计算机(computer)软件研制中最困难的部分之一。当前INTERNET、虚拟现实、科学计算可视化及多媒体等技术也对用户界面提出了更高要求。图形用户界面极大地方便了非专业用户的使用,人们可以通过窗口和菜单进行操作,便于蓝图编程和快速编程、三维彩色立体动态图形显示、图形模拟、图形动态跟踪和仿真、不同方向的视图和局部显示比例缩放功能的实现。

  2.2.2科学计算可视化科学计算可视化可用于高效处理数据和解释数据,使信息交流不再局限于用文字和语言表达,而可以直接使用图形、图像、动画等可视信息。可视化技术与虚拟环境(environment)技术相结合,进一步拓宽了应用领域,如无图纸设计、虚拟样机技术等,这对缩短产品设计周期、提高产品质量、降低产品成本具有重要意义。在数控技术领域,可视化技术可用于CAD/CAM,如自动编程设计、参数自动设定、刀具补偿和刀具管理(manage)数据的动态处理和显示以及加工过程的可视化仿线插补和补偿方式多样化多种插补方式如直线插补、圆弧插补、圆柱插补、空间椭圆曲面插补、螺纹插补、极坐标插补、2D+2螺旋插补、NANO插补、NURBS插补(非均匀有理B样条插补)、样条插补(A、B、C样条)、多项式插补等。多种补偿功能如间隙补偿、垂直度补偿、象限误差补偿、螺距和测量系统误差补偿、与速度相关的前馈补偿、温度补偿、带平滑接近和退出以及相反点计算的刀具半径补偿等。

  2.2.4内装高性能PLC数控系统内装高性能PLC控制模块,可直接用梯形图或高级语言编程,具有直观的在线调试和在线帮助功能。编程工具中包含用于车床铣床的标准PLC用户程序实例,用户可在标准PLC用户程序基础上进行编辑修改,从而方便地建立自己的应用程序。

  2.2.5多媒体技术应用多媒体技术集计算机(computer)、声像和通信(communicate)技术于一体,使计算机(computer)具有综合处理声音、文字、图像和视频信息的能力。在数控技术领域,应用多媒体技术可以做到信息处理综合化、智能化,在实时监控系统和生产现场设备的故障诊断、生产过程参数监测等方面有着重大的应用价值。

  2.3.1集成化采用高度集成化CPU、RISC芯片和大规模可编程集成电路FPGA、EPLD、CPLD以及专用集成电路ASIC芯片,可提高数控系统的集成度和软硬件运行速度。应用FPD平板显示技术,可提高显示器性能。平板显示器具有科技含量高、重量轻、体积小、功耗低、便于携带等优点,可实现超大尺寸显示,成为和CRT抗衡的新兴显示技术,是21世纪显示技术的主流。应用先进封装和互连技术,将半导体和表面安装技术融为一体。通过提高集成电路密度、减少互连长度和数量来降低产品价格,改进性能,减小组件尺寸,提高系统的可*性。

  2.3.2模块化硬件模块化易于实现数控系统的集成化和标准化。根据不同的功能需求,将基本模块,如CPU、存储器、位置伺服、PLC、输入输出接口、通讯等模块,作成标准的系列化产品,通过积木方式进行功能裁剪和模块数量的增减,构成不同档次的数控系统。

  2.3.3网络化机床联网可进行远程控制和无人化操作。通过机床联网,可在任何一台机床上对其它机床进行编程、设定、操作、运行,不同机床的画面可同时显示在每一台机床的屏幕上。

  3.1不断加强技术创新是提高国产数控机床水平的关键国产数控机床缺乏核心技术,从高性能数控系统到关键功能部件基本都依赖进口,即使近几年有些国内制造商艰难地创出了自己的品牌,但其产品的功能、性能的可*性仍然与国外产品有一定差距。近几年国产数控机床制造商通过技术引进、海内外并购重组以及国外采购等获得了一些先进数控技术,但缺乏对机床结构与精度、可*性、人性化设计等基础性技术的研究,忽视了自主开发能力的培育,国产数控机床的技术水平、性能和质量与国外还有较大差距,同样难以得到大多数用户的认可。

  3.2制造水平与管理手段依然落后一些国产数控机床制造商不够重视整体工艺与制造水平的提高,加工手段基本以普通机床与低效刀具为主,装配调试完全*手工,加工质量在生产进度的紧逼下不能得到稳定与提高。另外很多国产数控机床制造商的生产管理依然沿用原始的手工台账管理方式,工艺水平和管理效率低下使得企业无法形成足够生产规模。如国外机床制造商能做到每周装调出产品,而国内的生产周期过长且很难控制。因此我们在引进技术的同时应注意加强自身工艺技术改造和管理水平的提升。

  3.3服务水平与能力欠缺也是影响国产数控机床占有率的一个重要因素由于数控机床产业发展迅速,一部分企业不顾长远利益,对提高自身的综合服务水平不够重视,甚至对服务缺乏真正的理解,只注重推销而不注重售前与售后服务。有些企业派出的人员对生产的数控机床缺乏足够了解,不会使用或使用不好数控机床,更不能指导用户使用好机床;有的对先进高效刀具缺乏基本了解,不能提供较好的工艺解决方案,用户自然对制造商缺乏信心。制造商的服务应从研究用户的加工产品、工艺、生产类型、质量要求入手,帮助用户进行设备选型,推荐先进工艺与工辅具,配备专业的培训人员和良好的培训环境,帮助用户发挥机床的最大效益、加工出高质量的最终产品,这样才能逐步得到用户的认同,提高国产数控机床的市场占有率。

  3.4加大数控专业人才的培养力度从我国数控机床的发展形式来看需要三种层次的数控技术人才:第一种是熟悉数控机床的操作及加工工艺、懂得简单的机床维护、能够进行手工或自动编程的车间技术操作人员;第二种是熟悉数控机床机械结构及数控系统软硬件知识的中级人才,要掌握复杂模具的设计和制造知识,能够熟练应用UG、PRO/E等CAD/CAM软件,同时有扎实的专业理论知识、较高的英语水平并积累了大量的实践经验;第三种是精通数控机床结构设计以及数控系统电气设计、能够进行数控机床产品开发及技术创新的数控技术高级人才。我国应根据需要有目标的加大人才培养力度,为我国的数控机床产业提供强大的技术人才支撑

  (1)王爱玲教授主编的系列教材《现代数控技术系列》(六本)(①《现代数控原理及系统》②《现代数控机床伺服及检测技术》③《现代数控编程技术及应用》④《现代数控机床故障诊断及维修》、⑤《现代数控机床操作技术教程》⑥《现代数控机床》),2002年1月国防工业出版社出版以来,2004年已3次印刷,2005年1月再版。

  (2)李郝林主编:《机床数控技术》,机械工业出版社出版,2002年9月第1版;

  (3)宋本基主编:《数控机床》,哈尔滨工程大学出版,1999年3月第1版;

  (4)王永章等主编:《数控技术》,高等教育出版社,2003年4月第2次印刷;

  (6)冯志刚主编.数控宏程序编程方法、技巧与实例[M].机械工业出版社,2007年7月。

  (一)创建仿真机床将五轴加工中心实体按运动逻辑关系(主要按各运动坐标轴)进行分解,利用三维CAD软件(如SeimensNX8.0)分别建立各部件三维模型,并转换成VERICUT软件能识别的STL文件;然后根据各部件的逻辑结构关系在VERICUT软件中进行装配,得到需要的仿真机床模型;最后设置好机床参数,完成仿真机床的创建。三维建模时,只建立部件的外形模型,而不考虑机床内部传动机构,机床本体及其它非运动部件可简化为一体建模。各部件模型在建模坐标系中的位置尺寸最好与该部件在五轴加工中心上同机床原点的关系一致,以便于在导入VERICUT时,能直接确定各部件之间的位置关系,可从机床说明书上获得相关数据。在VERICUT软件中进行各部件装配时,应首先根据机床的运动依存关系,建立机床项目树,这是形成仿真机床的基础。MIKRONUCP800DURO机床各部件的运动依存关系为:所有运动部件依存于机床本体;刀具安装在主轴部件上,由主轴部件实现Z方向运动,主轴部件跟随Y轴部件运动,而Y轴部件跟随X轴部件运动;此外,工件安装在工作台上,工作台实现C轴旋转,而C轴工作台跟随A轴部件实现绕A轴的旋转运动。因此,创建机床项目树的顺序应为:Base—X—Y—Z—Spindle—Tool,Base—A—C—Fixture—Stock。得到机床项目树(如图1)后,分别添加各部件几何模型,完成MIKRON仿真机床的模型创建。所得到的仿线所示。对所创建的机床模型,需进行参数设置才能最终用于仿真加工。可利用VERICUT菜单条中的配置机床设定命令,对碰撞检测、初始机床位置、换刀位置、机床行程极限等参数进行设置。

  (二)配置数控系统MIKRON五轴加工中心配置的数控系统为Hei-denhainiTNC530,在VERICUT菜单条中选择配置控制打开控制文件,在控制系统库下选择hei530.ctl作为机床控制系统。但VERICUT提供的控制系统是最基本的配置,需根据机床实际情况进行相关参数设置。可在VERICUT菜单条中选择配置控制设定命令,在弹出对话框中“旋转”标签下设置A轴旋转台型为“EIA(360绝对)”,C2轴旋转台型为“线性”,绝对旋转式方向为“正向CCW绝对”,使用RTCP参数项设置为“RTCP旋转轴偏置”,并将RTCP轮廓运动设置为“是”。此外,该控制文件缺少A、C轴夹紧及松开辅助指令M10/M11以及M15/M16,为避免仿真时产生不必要的报警,需选择VERICUT菜单条中配置文字格式命令,在弹出对话框的“字格式”标签中添加此四个辅助功能名字。图2MIKRONUCP800DURO仿真机床模型

  (三)创建刀具库利用VERICUT的刀具管理功能,可建立加工所需刀具并形成刀具库。建立刀具时,需分别定义刀具(Cutter)及刀具夹持器(Holder)的形状尺寸,应根据实际情况精确绘制,以保证仿真的可靠性。在刀具库中,应为每一把创建的刀具设置好对应的刀具号,并将刀具的装夹点设置在刀具夹持器顶面中心位置,以确保正确调用刀具。

  调用已经创建好的五轴工艺系统仿真环境,完成以下步骤:(1)导入零件及毛坯模型。在VERICUT中导入模型文件后,应确保模型处于正确的位置,否则会出现加工错误的情况。通常的做法是,在机床上安装好工件以后,通过对刀操作确定工件上对刀点在机床坐标系中的坐标值,然后在三维CAD软件中移动零件模型,使模型上对刀点在工件坐标系(WCS)中的坐标值与实际对刀值一致,并将模型的加工坐标系(MCS)与工件坐标系设置为重合,再以STL格式导出模型文件。这样可确保导入模型后,无需再在VERICUT环境中移动模型,也无需设置加工坐标系统,利用仿真软件默认的机床原点及加工坐标系即可实现仿线)启动仿真。仿真过程中,若出现干涉、碰撞、超程等错误,仿真软件能自动报错,并指示出错的具体情况。据此,可重新编制数控程序、调整刀具尺寸、调整工件装夹位置,继续仿真加工。涡轮导向器的加工仿线所示。

  MasterCAM软件是美国CNCSoftware公司开发的基于PC平台的CAD/CAM系统,广泛应用于机械加工、模具制造、汽车工业和航天工业等领域。它支持曲面高速、高精度加工和多轴(四轴、五轴)加工。应用其多轴加工功能模块,可方便、快速地编制高质量的多轴加工数控程序。MasterCAM提供了多种复杂零件的粗精加工方法,根据零件的外形结构选择不同的加工方法,大大提高了零件的加工效率和质量。零件加工的刀位轨迹一般分粗加工轨迹、半精加工轨迹和精加工轨迹,根据需要,可自动生成各阶段的数控代码。

  1.1模型导入工业界经常采用多款软件来实现产品协同设计、数控加工等,以达到发挥每款软件的优势,因此,文件格式的转换就不可避免,对于SolidWorks和MasterCAM系统间的文件转换,可采用x_t格式,iges格式等进行转化、导入[3]。印章模型采用x_t格式导入。

  1.2印章数控加工流程模型导入后,主要加工表面为回转体的外形表面,可以采用四轴加工,工件底面安装在工作台上,印章的数控加工流程见图2。

  1.3数控加工代码生成及仿真验证导入模型,双击“机床类型”,选择“铣床”命令,展开“属性”操作命令,进入材料设置对话框,在“形状”选项组中选择“实体”单选按钮,如图3所示,进行确定,得到毛坯。考虑到工件底面水平放置,选择工件底面中心为编程原点,选择工件旋转轴线为A轴。需要说明的是,在MasterCAMX5版本中,四轴旋转加工已经并入五轴旋转加工选项,实际应用中定义四轴即可。选择刀具路径中的“多轴刀具路径”,进行四轴加工参数设置,分别定义好刀具路径参数、刀具加工参数和旋转四轴等参数,其中,刀具选择240#,刀具直径为6mm,其运动参数设置见图4。

  多轴加工参数设置第四轴时,当选择“X轴”,表示刀具旋转轴垂直于X轴,即刀具在YZ平面内旋转;当选择“Y轴”,表示刀具旋转轴垂直于Y轴,即刀具在ZX平面内旋转;印章加工选择“Z轴”,即刀具旋转轴垂直于Z轴,刀具在XY平面内旋转。参数设置完毕后,进行刀具轨迹计算,计算结果见图5。

  为了检验4轴刀具轨迹的准确性,有必要进行刀具的运动仿真,而MasterCAMX5提供了强大的集成仿真校验功能模 块,能够对整个过程进行运动仿真,进行包括夹具、工件、刀具在内的干涉检查。利用MasterCAM的加工仿真模块,检验刀具是否发生碰撞和过切;加工中,工件固定,刀具围绕模型轴线给出了印章虚拟加工过程中的仿真示意图。如果在加工过程中出现干涉问题,则对刀具轨迹进行修正;若无问题,通过操作管理对线按钮,生成G代码,见图7。最后,检查G代码,并对代码修改翻译,使之成为机床可用的数控代码,就可生产加工实际零件。

  数控加工中,根据加工工件要求而需要通过换刀指令选择不同刀具进行加工时,刀具长度会发生变化。刀具长度的变化使得非基准刀位点起始位置与基准刀位点起始位置不重合,此时必须对刀具长度变化做出适当处理,避免零件报废或撞刀问题的发生。刀具长度补偿既是为了避免此类问题发生而引入的概念,同时长度补偿也是提高编程及加工效率的关键点。刀具长度补偿使刀具在垂直于走刀平面(比如G17,XY平面)的方向上偏移一个刀具长度修正值,因此在数控编程过程中,一般无须考虑刀具长度。也就是说,每一把刀的长度都是不同的,刀具的长度补偿只是和Z坐标有关。刀具长度补偿由两种方式,一种是用刀具的实际长度作为刀长的补偿,另一种采用刀尖在Z方向上与编程零点的正负距离值作为补偿值。在具体的应用中,刀具长度补偿还应用于不同规格刀具或刀具磨损后的调整,利用刀具长度补偿指令补偿刀具的变化,避免了重新调整刀具或重新对刀带来的工作量增加,提高了加工效率。

  在数控加工过程中以“刀具相对于工件运动”为原则,不考虑刀具大小在编程后所引起的、由刀具半径值所产生的过切现象。因此需要在编程时引入刀具半径补偿,根据实际刀具大小按照工件轮廓使刀具自动偏离轮廓一个刀具半径,避免多切问题的发生。根据数控加工中对精度、效率及质量的需求,数控编程及操作人员应正确掌握刀具半径补偿的概念及应用方法。通过合理设置刀具半径补偿值,保障加工精度。刀具半径补偿应利用理论轮廓编程,通过预先设定偏置参数实现加工目标。刀具半径补偿概念的应用能够在编程过程中不考虑太多刀具直径大小问题,进而提高编程效率。刀具半径补偿一般情况下只是用于铣刀类刀具,在根据工件尺寸编程后,将刀具半径作为半径补偿值放在半径补偿储存器中,在此后的加工中无论更换铣刀还是进行粗精加工转换,只要更改刀具半径补偿值即可。由此可见,刀具半径补偿的应用能够极大的降低数控加工中的编程工作量及计算工作量,利用刀具补偿实现加工效率提高的目的。

  在刀具补偿概念应用中,需要正确掌握刀具补偿的使用技巧,以此实现提高工作效率的目的。在刀具长度补偿指令的使用中,应首先掌握正负补偿及偏置量的确定技巧。正负补偿量要根据Z轴的方向确定,如刀具刀位点在编程原点Z坐标正方向,则使用负补偿(G44)。在补偿功能代号H后的两位数字表示的刀具补偿寄存器地址中存放刀具长度的补偿值,以主轴轴端中心作为起刀点,以刀具离轴端伸出长度为H中的偏置量。这样能够避免指令使用错误带来的加工事故,实现刀具补偿应用目的。在刀具长度补偿指令中刀具位置发生变化时,应将坐标的变化转化为工件坐标系的变化,也就是将工件坐标系和刀具一起沿Z轴方向移动一个刀具长度补偿值,重新建立一个新的坐标系,再将加工程序中的Z坐标值放在新的工件坐标系中,通过这样的方式简化刀具长度补偿中的繁琐计算,提高编程效率。在刀具半径补偿的应用中,应对刀具半径补偿功能、刀具选择以及刀具路径确定等进行分析,利用“少吃快走”工艺,提高加工效率。另外,加工中还应改变思维方式,利用刀补参数寄存器常量改变量的方式,加工典型工件,实现提高加工效率的目的。具体的刀具半径补偿应用技巧需要数控加工人员在实际的加工中,根据工件的实际情况及经验进行总结与分析,提高刀具半径补偿概念的利用率。

  在数控加工中的刀补功能使用中,需要注意以下几点。首先建立及取消刀补时,刀具必须在刀补平面内运动。其次启用刀具补偿时,必须了解刀具运动方向,避免加工方向错误造成的工件废品。另外在刀具补偿指令应用中必须采用先下刀后建立刀补、抬刀后取消刀补程序的方式,避免刀补信息不足、程序无法计算等问题的发生,避免抬刀前取消刀补产生的零件报废问题。最后抬刀后取消刀补,这样刀具远离工件,避免刀具多切现象的发生。针对刀具补偿应用中的常见问题及生产安全事故原因,掌握科学的刀具补偿应用方法,实现刀具补偿应用目标。

  数控技术是在传统机械加工技术的基础上,采用数字控制技术来进一步提高机械加工的质量,并且结合传统机械制造技术、计算机技术与网络通信技术等进行机械加工运动。较传统机械加工技术来说,其不但具有高准度与高效率,同时还具备柔性自动化等优点,国内现在对数控技术的应用主要是预先编制好程序,再通过控制程序来控制设备,一般采用计算机进行控制。

  数控加工技术可以简便的改变相关工艺参数,因此在进行换批加工与研制新产品时非常方便。另外,像普通机床很难完成的加工复杂零件与零件曲面形状等,利用数控加工技术都可以高质量量完成。数控加工技术采用模块化标准工具,在换刀与安装方面都节省了很多时间,同时对工具的标准化程度与管理水平都有较大的提高。

  提高了机床的控制力近年来数控技术在机械加工技术中的应用,对机床控制力有了很大程度上的提高,进一步提高了机械加工的工作效率。采用数控技术来控制机床设备,充分发挥了机床设备的功能,同时使机床设备的操作更加简单,通过在数控器上预先编制好机械加工的流程与操作方法,并由控制器依据相关数字信息来控制机床运行,不但保证了机械加工的质量,同时也使机床设备更具高效化。

  推动了汽车制造业的发展数控技术对进一步发展汽车制造业有很大的帮助,通过将数控技术应用到机械加工技术中以提高机械加工技术的有效,为进一步发展汽车制造业提供了技术保障,在汽车零件的加工中运用数控技术可有效提高生产率,同时强化了汽车进行机械加工的效果,使原本复杂的操作更加简单,提高汽车零件加工生产的效率同时促使汽车制造业实现最大化收益。

  近些年来,数控技术虽已被广泛应用到机械加工技术中,但是仍然有一部分企业内部对数控技术的应用缺乏足够的重视。因此,要想进一步将数控技术融入到机械加工技术当中,首先就必须要让企业的经营管理者充分认识到数控技术在机械加工技术中的重要意义,给予充分的重视。同时,积极组织数控技术相关知识的培训,提高工作人员数控技术水平,结合数控技术的实际操作与理论知识,以便更好的发挥数控技术的优势,提高机械加工的质量与效率。

  一般在机械加工的过程中都是采用人工手动进行对生产制造图样与编写零件加工程序单以及工艺过程进行确定,这样不仅效率低且容易出现人为计算失误。因此,应注重对数控技术有效性的应用,尽快实现自动编程,使用计算机来替代人工操作,不但可保证加工质量,同时提高机械加工制造的效率,实现人力与物力的合理化配置,为加工企业节约制造成本,进一步推动机械制造业的发展。

  在全球经济发展的推动下,我国工业大力发展,数控技术被越来越普遍的应用到了机械加工技术中,而时代新形势对机械加工的要求越来越高,因此,应当积极创新数控技术,大力倡导经济型数控机床的发展,以保证数控机床的稳定性与高效性。同时,对机械加工中的原有设备应当进行合理改进,提升机械加工的技术水平,完善数控技术的应用,提高我国机械制造业的生产水平。

  异形槽零件通常壁厚程度从0.5mm到1.1mm不等,究其原因是形状尖角分布广泛,造成了应力的集中,极容易产生裂纹和内裂变力。这种零件在加工过程中,经过一系列的切削振动、工装夹具和灼热加工后,残余应力经过重新分布难以避免的会发生变形外,在各个加工工序之间流转存放的过程中,零件的残余应力也会受存放环境的影响(如温度,空气湿度等)而发生形状、尺寸上的变化,会造成工中的成品率不高。

  2.1零件图工艺的分析零件图可以直观的反应出零件的性能,用途和工作条件[5]。让人对零件与产品中的相互关系和作用一目了然。是设计工艺的理论基础,因此,零件的工艺图应具备以下几个条件:(1)零件图具有完整性和正确性,符合国家标准,有完整的尺寸和相关的技术标注。如清楚的显示点、线、面之间的平行或相交的关系。画图的过程中可以用cad软件作为辅助工具,以求达到最直观清晰的构图效果。(2)关于尺寸标注方法的要求:在零件图上尺寸标注分为分散法和集中法。通常采用的是集中标注,有利于直观的向编制的程序提供数据。

  2.2针对材料的选择有些零件刚完工的时候是合格的,到整体装配的环节就出现超出范围的松动或难以装配,或者无法装配的情况。有些可以装配但是使用没多久就出现裂痕等情况。导致产品的使用寿命大大缩短。针对这一情况,对加工中出现损坏的材料进行抽样检查,发现在碳钢材料中,所含的S,P比值较高,导致的脆性变大,对加工过程的冷热变化十分敏感。因此,要提高成品加工的成功率,延长零件的最佳使用年限。就要在零件的选材上多下功夫,选择的材料必须符合如下几个特性:(1)材料表面实耐磨,具有良好的延伸性。(2)材料的内部必须具备良好的韧性和可塑性,且耐受性强数控加工。(3)因为异形零件工作介质很特殊,最好是选用渗碳合金钢(12CrNi4)q且含碳量要低于0.25。才能保证经过高温处理后,材料的内部仍具有良好的韧性,因为有碳的渗透而达到表面的硬度。Cr,Ni是为了提高材料的淬透性。

  3.1对加工刀具的分类槽类零件的加工刀具主要分为铣刀、镗刀两大类[6],根据不同的加工阶段要使用不同的刀具:(1)在自由啮面的粗加工和半精加工阶段,首先选择铣刀,因为它具有优质的切削质量和效率。(2)如果对自由曲面进行精加工的时候该选用球头刀,因为该刀的切削速度慢,切削的行距够密。(3)如果是粗精加工,即使是相同尺寸和规格的刀具,都要分开使用。一般情况下,尽量使用一把刀具完成所有的加工部位。

  3.2异形类零件加工过程中对刀具的用法(1)粗加工时螺旋进刀方式应控制在5度到10度之间,进刀量的径向不允许超过刀具直径的5%-8%,深度进给量要控制在刀具直径的5%。(2)半精加工阶段,由于零件的层间距离较小,要防止切削时刀具直接下沉到下个切削面,不要过切,要满足等量的切削原则。(3)粗加工和半精加工阶段,为实现较高的表面加工质量和切削效率,要配合使用UG软件的manufacturing模块里的cavity—mill铣削方式,其参数设定为,切削水平选bcalDepthperCut为2mm,将Stepover的toodiameter调整为55%。刀具则选用硬质合金双刃立式平底铣刀。(4)精加工阶段,选用优质合金球头刀为刀具;对比曲面的最大面,分为正反方向两组,刀轨走向尽可能的沿着最长轮廓线的方向;因为球头刀刀心速度为0,不属于切削而是削磨,所以加工时刀轴需要与零件底面保持不超过20度的倾斜,减少这样可以避免刀尖对加工零件的磨损;根据零件不同曲面的特点,可以用Cavity—mill中Ar.eaMilling、SurfaceArea、Boundar来进行加工。

  切削加工中要使用切削液,切削液具备四大性能,冷却性能,性能,清洗性能,防锈性能。在切削过程中切削液可以降低刀具与加工表面的摩擦,减少刀具的磨损,提高加工表面的光滑性。切削液也根据其性能也分为三个种类,切削油,乳化液,水溶液。水溶液其主要成分由水构成,无粘稠的透明质感,方便操作者观察,冷却性能好。其缺点是容易令金属零件生锈,性能差。乳化液外观呈透明或者乳白色,是由乳化剂、添加剂和植物油膏加水稀释而成,冷却、效果不错但是含水量大,容易让金属钝化。

  钻中心孔是异形槽类零件加工中十分细节却又极其重要的一环,对异形槽零件的加工工艺的品质起到决定性的作用,因此,在异形槽加工过程中,应注意如下几个问题。

  5.1防止中心钻的折断(1)中心钻一定要对准加工零件的回转中心,加工零件的末端要车平,不能留有凹头,否则容易造成中心钻偏斜,不能准确定钻心而折断。(2)切削时候要严格控制切削用量。(3)不能使用磨后的中心钻强行钻入。(4)要保证中心钻的清洁,及时清除中心钻上的切屑和浇注切削液。

  5.2防止中心钻孔钻的不圆或钻偏(1)要及时矫正出现弯曲的加工零件2.保证装夹工具有良好的夹紧力,防止因夹紧力不足而引起的钻中心孔时加工零件的移位。且在钻孔时注意,中心孔不宜钻的太深,否则在工件夹装时不能与中心孔的钻孔贴合,避免中心钻孔修膜后圆柱部分的长度过短,不然在装夹时,容易造成装夹尖端与中心孔底的接触。

  正确的高温的处理方法对后来的切削加工质量有着决定性的作用,金属的组织成分不同在加热处理中会呈现出不同的组织特性,当含碳量不足0.25%时,金属的切削加工性能也随着碳含量的变化而变化,如果有大量的铁素体在回火状态下出现,那么说明该金属的延展性很好。因为渗碳合金钢(12CrNi4A)具有含碳量低的优势,经过渗碳后冷却,然后通过金属加热处理后再低温回火,从而形成柔韧性和强度的完美融合。大部分的异形槽类零部件加工过程中,都是先经过加热处理及回火后再进行磨削工作,通过磨削加工达到所追求的良好机械性能。工件采用半自动或自动机床加工时高效率成批生产,只有经过科学的热处理工艺方法,有效的降低了磨削时“烧伤”或形成“磨削裂纹”的概率,保证了零件经过精磨后,还能维持有较高的光洁程度。因此,正确选定合理的热处理工艺方法是优质切削的基础。

  其次,在数控铣加工中,选择使用的夹具不仅要实现夹具坐标方向与机床坐标方向之间的相对固定性,同时还需要对于零件和机床坐标系之间的准确尺寸进行确定;在此基础上,进行零件加工夹具的选择使用可以结合加工零件的毛料状态与数控铣床的安装要求进行,既要保证零件的加工质量,同时还要满足加工制造的相应需求;此外,如果进行生产加工的零件批量相对比较小时,尽量选择组合夹具、可调夹具或者是其他通用夹具,以装夹方便为原则。

  再次,在进行上图所示的薄壁零件加工中,由于加工零件的材料为铝材,因此以白钢刀和麻花钻加工为主,并且加工制造中,上述薄壁零件需要进行正反两面加工,其中先进性B面加工铣割,加工过程中为避免两面加工的对刀误差所导致的接刀痕迹,需要在零件B面加工过程中将尽可能多的外轮廓一次装夹铣割完成,以保证进行另一面加工时有足够的铣割加工和装夹位置,从而保证薄壁零件的铣割加工精确度。

  最后,在进行上述薄壁零件加工中,为保证零件加工质量,减小加工过程中产生的误差,还需要结合零件加工的具体步骤情况,选择合适的铣割刀具。本文中根据加工零件的工艺步骤不同,主要以立式平底刀、中心钻、麻花钻、立式球头铣刀等刀具应用为主。

  1)工业领域中数控技术的应用。无论是轻工业食品加工,还是重工业的金属冶炼,数控技术都能够找到其用武之地。从整体角度来讲,其发挥的效能就在于代替工作人员完成一系列的工作任务,从而使得劳动强度降低,劳动环境良化,工作人员更加安全,工作质量更加高,消耗成本更加低。在工业领域中,数控技术的操作同样是由计算机系统去实现控制的,简单来讲,就是将事先做好的编程纳入到计算机系统中去,在运行过程中发出指令,使得其处于自动运行状态。

  2)机床设备领域中数控技术的应用。在机械加工体系中,机床设备控制技术是很关键性的技术,其拥有控制机床设备的能力,是现代机电一体化的重要组成部分。尤其在数控技术的帮助下,不仅仅可以使得机床控制能力得以强化,还使得机床的生产效率得以全面提升。一般情况下,同样是以代码控制方式为主,确定刀具,工件之间的位置,选择主轴,变速和刀具,冷却泵的顺序方案,在此基础上计算机发出相应的指令,要求机床完成相应的动作。

  3)煤矿机械加工领域中数控技术的运用。数控技术在煤矿机械加工中的应用,主要体现在采煤机的发展上。一般情况下,各个煤矿的开采环境是千差万别的,由此导致采煤机也难以实现大批量的标准化生产模式,更多情况下是以研发速度快,品种多,小批量的生产模式。尤其在初步试件以焊件的方式运行,给予传统机械加工造成了很大的困难,而数控技术可以轻易的对其进行切割,并且以龙骨版程序实现运作,能够在以下几个方面表现出其优势:其一,切割速度变快,使得采煤的速度变快,也就是说在同等时间下可以获得更多的劳动收益;其二,采煤质量更加稳定,能够产出更加高质量煤炭产品;其三,规避了人力采掘的危险,使得煤矿生产处于安全的状态下进行;其四,直接切割的操作方式,可以使得生产效率得以全面提升,是实现资源优化配置的重要途径,能够在生产利润最大化方面发挥作用。

  到机械加工领域中去数控技术的确可以在机械加工领域发挥巨大的作用,但是由于现阶段还存在很多制约数控技术发展的因素,使得其效能未能完全发挥出来。因此为了促进数控技术效能的发挥,我们还应该积极采取措施去促进数控技术的发展和进步。具体来讲,我们可以从以下几个角度入手:

  1)明确数控技术的发展方向,建立完善的理论研究体系。从数控技术的运用实践经验来看,其未来的发展方向为:越来越高性能,越来越高精度,越来越高速度,越来越高柔性化,越来越模块化,并且在这样的发展过程中,促进制造业朝着自动化,网络化,智能化和复合化的方向发展和进步。在数控技术发展方向确定之后,就应该建立完善的理论研究体系。具体来讲,应该做好以下几方面的工作:其一,高度重视数控技术理论研究工作,设立课题项目,注重企业与高校之间的联合研究,不断夯实自身的数控技术理论基础;其二,积极学习西方数控技术应用经验,引进先进的数控技术设备,在实践中去总结和归纳先进数控技术的优势,并且在此基础上进行大胆创新,促进数控技术理论的综合利用率提升;其三,不断总结和归纳自身数控技术发展存在的缺陷和不足,以此为出发点进行理论研究,找到查缺补漏的环节。

  2)注重工序安排和编程工作,形成高效的加工运行模式。从本质上来讲,所谓的数控技术就是以程序化的语言指令去实现机械控制,使得其达到高效的运转状态。在此过程中的工序安排和编程工作,往往就决定了数控技术的质量和水平。因此高度重视此项工作的开展,显得尤为重要。尤其在此方面实践经验不足的背景下,很容易出现忽视的问题,难以发挥数控技术的全部效能。一般情况下,会出现的问题在于:其一,加工时先加工套类工件,不能先加工轴;其二,外圆锥测量最好使用车好的内锥和内圆弧去进行测量;其三,精度控制不能单单依靠机床,应该采用二次精车的方式来保证其正确性。上述的各种问题,往往会影响到高效加工运行质量和效率。

  3)培养专业化数控技术人才,形成高效的数控机械管理团队。专业化的数控技术人才,也是发挥数控技术在机械加工领域效能的关键所在。对此,应该积极做好以下几方面的工作:其一,严格做好企业招聘管理工作,保证进入到数控岗位的人员都是经过严格审查的,以保证人才队伍整体素质处于较高水平;其二,积极开展专业化的数控知识培训和教育,使得数控技术人员具备专业化素养和技能,以保证数控技术可以顺利的运用到机械加工领域中去。

  社会的不断进步,市场需求量的不断增多,使得人们对产品的质量更加的重视,企业为了能够适应市场发展环境就必须提高自身的加工技术,数控机床得以被广泛应用。但是我国使用数控机床的时间比较短,不能真正地掌握数控机床的使用技术,在实际的应用过程中能够会出现很多的问题,给我国制造企业的发展造成不良影响。通过大量的实践工作,我们总结出我国的数控技术发展情况的几种现象。

  企业之间的竞争愈演愈烈,这就导致数控机床加工零件的数量不断增多,数控化加工设备的使用量不断增多,对加工产品的工艺要求越来越多。这三个方面对数控机床使用技术提出更高的要求。通过实践发现当前有很多行业百分之九十到百分之百关键部位的零件都采用机床加工技术。特别是近几年制造业的发展过程中,数控机床加工技术起到了很大的推动作痛,而且随着机床技术的不断发展,加工精度、效率等方面都有很大的提高。

  我们需要正视的问题是当前我国对数控机床加工技术的研究还比较少,缺乏相关的数据参数,缺乏实践的理论指导,缺乏研究发展的平台。这就是当前我国的数控机床技术所缺乏的方面,其中缺乏科学的理论参数就不能对数控机床加工技术有深入的了解,进而不能发挥出其真正的作用,具体的表现在应用中出现故障不能拿上解决,影响了生产效率,不能满足高效生产的要求。有关机床加工数据库的建立还不是很完善,而且使用范围也是非常的有限,这就很大程度上影响了加工技术的应用和发展,特别是缺乏针对服务业的加工技术数据库,甚至有很多企业根本就没有建立相关的系统,这就给数控机床技术的发展造成阻碍。

  当前的数控加工技术的总体效率比较低,具体的表现为主轴开动的效率比较地,直接影响到相关加工企业的经济效益。

  关于数控机床加工技术出现的问题,已经引起了人们的关注。国家针对此问题也开展了很多的项目研究,取得了很好的成果,在提高数控机床技术快速发展方面起到了很大的促进作用,这也进一步增加了相关企业的经济效益。

  虽然我国的数控机床技术起步比较晚,但是发展比较快,通过总结大量的实践经验,加工技术得到了很大的发展并取得了很好的效果。但是市场经济环境是不断发展和变化的,特别是技术方面在实际的应用中总会产生一些问题,影响其发展。下面我们就针对这些问题给出相应的对策。

  理论对实践具有重要的指导作用,数控机床理论对于技术的不断创新和产品的开发起到支撑作用,该理论涉及到的内容比较多,包括工程、力学、机械学等方面的知识。随着研究的不断深入,当代的数控机床理论有了更大的进步,具体的包括基础暗黑动力学、动态分析等方面。

  由于数控机床技术发展的时间比较短,相应的专业人才也比较短缺,使得机床技术的研究理论成果比较少,试验的环境不够完善。针对我国数控机床技术理论上的落后,我们必须提高这方面的投入,特别是人才的培养,在高校中设置这门学科,培养该学科的实践能力,并能够从实践中总结出理论经验,在实际的工作中,能够利用有限的理论资源来提高生产效率,建立一定规模的研究机构,实现对机床技术各个方面的理论探索。IM电竞

  数控机床是集电机、电子、机械等多个学科为一体的高科技设备,当前我国在数控机床自主研发、设计方面还有很大的差距,主要表现在设计没有对相关零部件进行整合、以静态设计模式为主、设计没有充分的论证仅仅依靠以往的经验进行定型化设计等。这种设计往往导致零件加工同质化现象严重,缺乏创新,有关零件细分产品较少很难满足现代市场的需求。因此,在现代数控机床设计时应注重探索数控技术设计理论,提高机床性能和功能的创新意识,不断优化在数控机床方面的探究和应用,逐渐实现油静态设计到动态设计模式的转化。

  数控机床工作性能是判定机床质量的重要指标,是用户比较关心的重要内容。数控机床稳定性一般使用平均故障时间间隔来判定,该参数不但描述了产品质量时间度量值,而且还综合反映了机床生产企业的综合实力。因此,应加强数控机床可靠性方面的研究,建立和完善机床可靠性评价体系,熟悉机床故障发生的模式,在设计时采用相关措施加以避免,全面提高数控机床的可靠性能。

  掌握典型的数控机床加工工艺,能够准确把握市场需求,从而不断研发新产品,在提升产品竞争上具有重要意义,尤其最近几年来我国机床企业对此引起了高度重视IM电竞,对经典工艺的研究越来越重视。通过对经典加工工艺的研究能够指导新工艺的开发,缩短新工艺的开发周期,树立企业良好的形象,以此发挥企业的竞争优势。

  随着制造业对数控机床的依赖程度越来越大,以及现代计算机技术水平的飞速发展为数控机床功能的扩展提供了坚实的技术支撑,使数控机床的应用范围不断扩大,而且逐渐向智能化、高精度化以及网络化的趋势发展。

  数控技术控制智能化主要通过执行相关算法对加工的产品进行识别,从而选择合理的加工参数。智能化功能的实现极大的提高零件加工的精读,提高机床的工作效率。例如,它能利用已有的故障信息对新出现的故障进行快速定位。

  数控机床的高精度化不仅仅局限在几何精度上,它还包括机床各个部件运动、振动检测等方面上,因此,能够在同条件下完成多个零件的加工。

  数控机床的网络化是未来发展的主要特点之一,通过网络能够保证加工参数在各个车间进行传递,既能达到数据之间的共享还能对数控机床进行远程监控,因此大大提高了机床的操作效率。

  综上所述,文章主要针对数控机床技术在我国的应用现状以及出现问题进行了相关阐述,并进一步提出了当前应该采取的措施和该项技术未来的发展趋势。数控机床技术对企业的重要性是不言而喻的,我们必须抓住发展的机遇,对数控机床理论进行分析和研究,并不断创新,希望能够使我国尽快地实现制造强国。


网站地图 网站地图